Equivariant Morse Theory and Quantum Integrability

نویسنده

  • Antti J. Niemi
چکیده

We investigate an equivariant generalization of Morse theory for a general class of integrable models. In particular, we derive equivariant versions of the classical Poincaré-Hopf and Gauss-Bonnet-Chern theorems and present the corresponding path integral generalizations. Our approach is based on equivariant cohomology and localization techniques, and is closely related to the formalism developed by Matthai and Quillen in their approach to Gaussian shaped Thom forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Localization of Path Integrals

We review equivariant localization techniques for the evaluation of Feynman path integrals. We develop systematic geometric methods for studying the semi-classical properties of phase space path integrals for dynamical systems, emphasizing the relations with integrable and topological quantum field theories. Beginning with a detailed review of the relevant mathematical background – equivariant ...

متن کامل

Ginsburg-Pitaevski-Gross differential equation with the Rosen-Morse and modified Woods-Saxon potentials

In this paper, we consider non-linear Ginsburg-Pitaevski-Gross equation with the Rosen-Morse and modifiedWoods-Saxon potentials which is corresponding to the quantum vortices and has important applications in turbulence theory. We use the Runge- Kutta-Fehlberg approximation method to solve the resulting non-linear equation.    

متن کامل

On Quantum Integrability and the Lefschetz Number

Certain phase space path integrals can be evaluated exactly using equivariant cohomology and localization in the canonical loop space. Here we extend this to a general class of models. We consider hamiltonians which are a priori arbitrary functions of the Cartan subalgebra generators of a Lie group which is defined on the phase space. We evaluate the corresponding path integral and find that it...

متن کامل

A new integrable system on the sphere and conformally equivariant quantization

Taking full advantage of two independent projectively equivalent metrics on the ellipsoid leading to Liouville integrability of the geodesic flow via the well-known Jacobi-Moser system, we disclose a novel integrable system on the sphere S, namely the dual Moser system. The latter falls, along with the Jacobi-Moser and Neumann-Uhlenbeck systems, into the category of (locally) Stäckel systems. M...

متن کامل

Two-orbit Kähler Manifolds and Morse Theory

We deal with compact Kähler manifolds M acted on by a compact Lie group K of isometries, whose complexification K has exactly one open and one closed orbit in M . If the K-action is Hamiltonian, we obtain results on the cohomology and the K-equivariant cohomology of M .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994